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ABSTRACT 

Background: Epidemiological studies have reported associations between particulate matter (PM) 

concentrations and cancer, respiratory, and cardiovascular diseases. DNA methylation has been 

identified as a possible link but so far it has only been analyzed in candidate sites. 

Objectives: To study the association between DNA methylation and short- and mid-term air 

pollution exposure using genome-wide data, and identify potential biological pathways for additional 

investigation. 

Methods: We collected whole blood samples from three independent studies, KORA F3 (2004-05) 

and F4 (2006-08) from Germany and Normative Aging Study (1999-2007) from the US, and 

measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM 

concentration was measured daily at fixed monitoring stations and three different trailing averages 

were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis 

was performed to pool the study-specific results. 

Results: Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as 

associated with PM concentration (one for 2-day average, one for 7-day and ten for 28-day) at a 

genome-wide Bonferroni significance level (p<=7.5E-8); 9 out of these 12 sites expressed increased 

methylation. Through estimation of I-squared statistics for homogeneity assessment across the 

studies, four of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p>0.05 and 

I2<0.5: the site from the 7-day average results and 3 for the 28-day average. Applying False 

Discovery Rate, p-value<0.05 was observed in 8 and 1819 additional CpGs at 7- and 28-day average 

PM2.5 exposure respectively. 

Conclusion: The PM-related CpG sites found in our study suggest novel plausible systemic 

pathways linking ambient particulate matter exposure to adverse health effect through variations in 

DNA methylation. 
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INTRODUCTION 

Ambient air pollution has been associated with total mortality, as well as cardiorespiratory 

disease morbidity and mortality (Brook et al. 2010; Hoek et al. 2013). Recently, association 

between long-term exposure to ambient air pollution, benzene and nitrogen dioxide, and lung 

cancer has been reported in North America and Europe (Puett et al. 2014; Raaschou-Nielsen et 

al. 2013; Villeneuve et al. 2014). Especially fine particulate matter (PM2.5: particulate matter 

smaller than 2.5 µm) is believed to be responsible for the associations. The WHO estimates 3.7 

million premature deaths worldwide in 2012 due to ambient air pollution (WHO 2014).  

Findings based on animal models suggest that oxidative stress and inflammatory responses 

initiated upon deposition of fine particulate matter in the alveoli may be key pathophysiologic 

mechanisms linking exposure to ambient fine particles to both respiratory and cardiovascular 

diseases in humans (Cassee et al. 2013). Oxidative stress and inflammation have also been 

proposed as underlying mechanisms linking PM and cancer, including lung cancer (Soberanes et 

al. 2012; Zhao et al. 2013). Despite these evidences, the extent to which systematic effects are 

elicited by ambient particles, and the detailed pathways activated are still under debate (Peters 

2012). Novel molecular approaches such as genome-wide methylation assays allow a hypothesis-

free assessment of changes in the regulation of blood leukocytes, involved in CVD development 

(Baccarelli and Bollati 2009).  

Changes in global methylation  as well as in candidate genes (Bind et al. 2014) were observed in 

individuals with high occupational exposure such as foundry workers in a small study (Tarantini 

et al. 2009) or in response to ambient PM concentrations few hours before the study visit 
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(Baccarelli et al. 2009). However it is difficult to determine the exact time window associated 

with methylation.  

Genome-wide methylation assays allow taking advantage of advances in biological technologies 

in epidemiological studies (Christensen and Marsit 2012) and studying in particular the role of 

ambient fine particle concentrations in the days and weeks before biosample collection.  

The objective of the analyses presented here is to identify and investigate DNA methylation at 

CpG sites in association with short- and mid-term PM2.5 ambient exposure. In addition, we 

consider biological pathways that might mediate associations between PM2.5 and health 

outcomes, based on the specific CpG sites identified. 

METHODS 

Three independent cohort studies formed the basis for the analyses presented here. Uniform 

methods were applied for fine particle measurements and methylation methods.  

Study populations 

KORA F3 and F4 cohorts are follow-up studies from the previous KORA S3 and S4, two 

surveys enrolled in the region of Augsburg (South Germany) by sampling all inhabitants with 

German nationality aged 25-74 in accordance with principles of the Declaration of Helsinki. 

Respectively, they included 3,988 and 4,227 participants and data were collected between 

2004/05 (F3) and 2006/08 (F4) according to standardized operating procedures. Exhaustive 

information about these two studies has been described previously (Holle et al. 2005; Wichmann 

et al. 2005). Methylation profiles were evaluated for a total of 500 KORA F3 participants and 

1,799 F4 participants. No sample overlap appears between F3 and F4 and all participants 
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supplied written informed consent and they were approved by the Ethics Committee of the 

Bavarian Medical Association. 

The Veteran Affairs (VA) Normative Aging Study (NAS) is an ongoing longitudinal study of 

aging established in 1963, details of which have been published previously (Bell et al. 1972). 

Briefly, the NAS is a closed cohort of 2,280 male volunteers from the Greater Boston area aged 

21–80 years at entry, who enrolled after an initial health screening determined that they were free 

of known chronic medical conditions. The present study was approved by the Department of 

Veterans Affairs Boston Healthcare System, and written informed consent was obtained from 

subjects prior to participation. They have been reevaluated every 3–5 years by using detailed on-

site physical examinations and questionnaires. Blood samples were provided from 657 

participants and for most of them a second sample was drawn (1,119 samples in total) between 

1999 and 2007. 

We restricted the current analysis to white participants (n= 657) in order to increase 

comparability across the studies.  

Profiling of DNA Methylation  

We used the Illumina 450k Beadchip (following the Illumina Infinium HD Methylation Protocol) 

to assess DNA methylation in more than 480,000 CG dinucleotide (CpG) methylation sites 

throughout the entire genome (Zeilinger et al. 2013). Detailed validation and evaluation of this 

technology are provided by Sandoval et al. (Sandoval et al. 2011) and Dedeurwaerder et al. 

(Dedeurwaerder et al. 2011). Outputs of the chip are ß values that represent the percentage of 

methylation for every CpG target. Since the microarray measures each CpG site with either of 
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two technically distinct types of probes, the distribution of resulting methylation values differs.  

Here the approach used to preprocess the data: 1- data quality: removal of records according to 

functional beads, detection p-value and SNP frequency; 2- data correction: background 

subtraction and dye bias adjustment; 3: probe type adjustment: Beta-mixture quantile 

normalization (BMIQ, (Teschendorff et al. 2013)). Normalization process was chosen based on 

review papers (Marabita et al. 2013; Wu et al. 2014).  

Environmental measurement 

Specifically, in KORA, PM2.5 mass concentration in ambient air and temperature were measured 

hourly at one monitoring station approximately 1 km south-east of the city center of Augsburg 

for the length of the whole study period 2004-2008 (Birmili et al. 2010; Pitz et al. 2008) with the 

Tapered Element Oscillating Microbalance (TEOM model 1400A device Rupprecht and 

Patashnick). 44 days were missing in KORA in 2004-2008 and eventually excluded from 

calculation of trailing averages.  

In NAS, ambient PM2.5 concentration was monitored downtown Boston 1 km from the VA 

medical center. We measured hourly PM2.5 concentrations with the same device as in Augsburg. 

Hourly temperature data were obtained from the Boston Logan airport weather station (12 km 

from the medical center). Sampling, processing of samples, analysis and reporting were 

conducted according to standard operating procedures (Dockery et al. 2005). Missing hourly 

concentration data for PM2.5 were imputed using regression modeling, including a long term time 

trend, day of week, hour of day, temperature, relative humidity, barometric pressure and nitrogen 

dioxide concentrations (NO2) as predictors.  
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Statistical Analysis 

An Epigenome Wide Analysis Study (EWAS) was conducted in each of the three studies. Based 

on previous knowledge (Baccarelli et al. 2009; Bruske et al. 2010; Steenhof et al. 2014; Zeilinger 

et al. 2013) we defined a priori model with the following covariates: age, personal income 

(education years for NAS, in which information on income was not available), alcohol intake, 

BMI, temperature (trailing average always matching with the PM exposure window) and the 

proportion of five white blood cell types: monocytes, B Cells, CD8 T cells, CD4 T cells, NK 

(estimated with a method developed by Houseman et al, (Houseman et al. 2012)) as continuous 

and sex, smoking status (never, former, current and passive - only for KORA - smokers), day of 

the week and season (according to the astronomical definition) as categorical. Complete variable 

coverage is in Table 1. In order to investigate the association between short- and mid-term PM2.5 

and DNA methylation, we considered three different averaging periods (2-, 7- and 28-day) 

backwards starting from the day of the visit, decided a priori based on Bind et al. (Bind et al. 

2014), Schwartz (Schwartz 2000) and Rückerl et al. (Rückerl et al. 2007). For KORA, 

multivariable linear regression models were used to investigate the association between PM2.5 

exposure and methylation values:  

Yi = β0 + β1 PM2.5i + β2 Temperaturei + β3 X3i + … + βpXpi + εi  [1] 

Where Yi is the methylation measurement for subject i, β0 is the intercept, β1 and β2 are the 

coefficients of the trailing average values for exposure and temperature during the specific time 

window, X3i to Xpi are the p–2 covariates and εi is the error. Effect estimates represent the 

difference in methylation associated with a 10 µg/m3 increase in PM2.5. For NAS data, we fitted 

generalized mixed-effect models in order to account for the repeated measurements; time-variant 
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covariates were assessed at both first and second visit and a random participant effect (ui) was 

applied in order to take the data collection at two different time points into account: 

Yit = β0t + β1PM2.5it + β2Temperatureit + β3X3it + … + βpXpit + ui + εit  [2] 

Finally, we pooled cohort-specific estimates, when available for all three studies, for each 

exposure window by random-effect meta-analysis (428,415 CG targets). Bonferroni threshold 

(fixed at 7.5E-08) and False Discovery Rate (FDR, (Benjamini and Hochberg 1995)) with 

Benjamini-Hochberg criterion was used to adjust fixed-effect p-values for multiple comparisons. 

I-squared test on fixed-effect estimates have been used to assess heterogeneity and CpGs with p-

values > 0.05 and I2 < 0.5 were labeled as homogenous. Finally, a number of sensitivity analyses 

were performed. We repeated the a priori models with additional adjustment for average annual 

exposure during the year before the visit to assess potential confounding by long-term exposure. 

In addition, we ran models adjusted only for age and sex, and models adjusted only for age, sex, 

and white blood cell proportions. All analyses were performed using statistical software R, 

Version 2.14. Residual plots of significant CpGs were used to check whether the identified CpGs 

where driven by outliers. To discard these values we used a rule of thumb based on biological 

knowledge. DNA methylation in the 0-1 range can be divided in hypo-, hemi- and hyper-

methylation with ranges [0 – 0.35], [0.35 – 0.65] and [0.65 – 1] respectively. Once selected the 

CpGs with very high residuals (absolute value above 0.25), identified the methylation segment 

where the mean was located and discarded all the values out of it, the analysis was repeated. 

Functional analysis of the identified genes has been performed via a web interface (Warde-

Farley et al. 2010). 
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RESULTS  

Data from three independent cohort studies were available (Table 1). Specifically, cross-

sectional data from two independent sub-samples of the KORA study (KORA F3, n=500 

participants and F4, n=1,799) and cohort data collected as part of the Normative Aging Study 

(NAS, n=657) formed the basis of the analyses presented here. The NAS included only men with 

an average age of 72 years while KORA F3 and F4 participants (52 and 49% of males) were on 

average 53 and 61 years old. While body mass index was rather similar, substantial differences 

were observed for years of education (mean of 15.1 in NAS vs 11.7 and 11.5 in KORA F3 and 

F4) and alcohol consumption (19.7% of drinkers for NAS vs 59.2 and 57.7% for KORA F3 and 

F4). Regarding smoking, KORA F3 consisted mostly of never and current smokers, KORA F4 of 

former and current while around two thirds of NAS participants were former smokers. Whereas 

NAS has on average lower particle concentration the day before the visit, it showed higher 

average temperature than the KORA studies. During the study period, PM2.5 exceeded the daily 

US EPA standard of 35 µg/m3 7.5% of the days in F3 (2004-05), 5.9% in F4 (2006-08) and 2.9% 

in NAS (1999-2007). Consistent methylation averages were observed between the three studies 

with relatively small standard deviations (Table 2-3). 

The meta-analyses identified genome-wide significant (p < 7.5E-08) associations between PM2.5 

exposure averaged over 2 days up to 4 weeks and single CpG-sites (Figure 1). DNA methylation 

at one CpG site (cg25575464 within NEURL4, chromosome 17) reached genome-wide 

significance (p < 7.5E-08) in association with 2-day trailing average PM2.5, with a positive 

association indicating higher methylation at 10 µg/m3 increase in exposure (Table 2, 

Supplemental Material Figure S1). Although study-specific associations were all positive, there 
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was significant heterogeneity among the studies. For 7-day average PM2.5 concentration, the 

association with one CpG site, cg19963313 (NSMAF, chr 8) reached genome-wide significance 

(Table 2) and study-specific estimates were positive and homogenous (I2=0.0, p-value 0.59) 

(Figure 2). Associations between 7-day PM2.5 and cg02608596 (MPND, chr 9) also were positive 

and homogeneous among the three studies, though the p-value was slightly above the alpha level 

for genome-wide significance (p = 7.69E–08). Cg02608596 and 7 additional CpGs had FDR p-

values < 0.05 for 7-day PM2.5, including cg25575464, which also was associated with 2-day 

PM2.5 (Table 2). Associations between 7-day PM2.5 and the additional CpGs were heterogeneous 

among the study sites in three cases and homogeneous in four cases. No additional CpG sites 

were identified as associated with 2-day PM2.5 based on FDR < 0.05. Associations between ten 

CpGs and 28-day average exposure to PM2.5 reached genome-wide significance, including 3 with 

lower methylation [cg16308101 (SERBP1, chr 1), cg13169286 (no annotated gene, chr 10), and 

cg20680669 (MN1, chr 22)] and 7 with higher methylation [cg23276912 (C1orf212, chr 1), 

cg03455255 (TSPYL6, ACYP2, chr 2), cg11046593 (MSGN1, chr 2), cg04423572 (ACVR2B-

AS1, chr 3), cg19215199 (ZMIZ1, chr 10), cg13527922 (F2, chr 11), cg26003785 (NXN, chr 17)] 

(Table 3). Study-specific associations were homogenous for cg23276912, cg11046593, and 

cg26003785 (Figure 3), but heterogeneous for the other CpGs (Supplemental Material, Figure 

S1). When we considered all associations with FDR p < 0.05, a total of 1,829 CpG sites were 

associated with 28-day average PM2.5 (Supplemental Material, Excel File S1), including five in 

genes with at least one Bonferroni significant CpG (also shown in Table 3): cg16856342 

(SERBP1, chr 1), cg02795981 (ZMIZ1, chr 10), cg24101979 and cg26283240 (NXN, chr 17) and 
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cg06004017 (MN1, chr 22). One CpG with a significant FDR for 28-day PM2.5 reached genome-

wide significance for 7-day PM2.5 (cg19963313, NSMAF, chr 8).  

Sensitivity Analysis 

Genome-wide significant CpGs at 28-day were also adjusted for long-term exposure and resulted 

in consistent estimates and p-values, except for cg20680669 which estimate moved from a ß = -

0.0049 with p = 2.09E-08 (without long-term) to ß = -0.0020 with p = 2.36E-03 and cg26003785 

which moved from ß = 0.0038 with p = 9.53E-09 to ß = 0.0033 with p = 1.10E-06 (Supplemental 

Material, Table S2). Furthermore, we checked for potential influences of outliers (Supplemental 

Material, Figures S2-S4). Cg11046593 was of concern in these plots and 22 values were 

excluded for F4, 1 for F3 and 12 for NAS. However, the association remained significant: the 

estimate moved from 0.016 to 0.012 and the p-value from 1.12E-08 to 5.48E-08. 

DISCUSSION 

This meta-analysis of  three cohort studies identified twelve CpGs genome-wide significantly 

associated with ambient fine particulate matter concentrations at different exposure times based 

on Bonferroni corrections. Based on previous knowledge (Bind et al. 2014; Rückerl et al. 2007; 

Schwartz 2000), we considered three different cumulative exposure windows: 2, 7 and 28 days 

and we observed that the number of associations was larger for the longest exposure window. 

Nine CpG sites displayed increased methylation and three decreased methylation after exposure 

to fine ambient particle concentrations. All identified methylation sites displayed little overall 

variation (average coefficient of variation: 15%) within the study populations. Four of them 

manifested homogeneous changes across the three different studies. Applying FDR, 7 and 1819 

additional CpGs were found significant at 7- and 28-day average PM2.5 exposure respectively. 
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The CpG site (cg19963313) identified with the 7-day trailing average showed homogeneity 

among the studies. Cg19963313 is positioned in the gene NSMAF that is linked with the 55kD 

tumor necrosis factor receptor since it encodes a WD-repeat protein which binds its cytoplasmic 

sphingomyelinase activation domain (Montfort et al. 2010). Moreover, it participates in the same 

reaction within a pathway as SMPD2 (Wu et al. 2010), which has been demonstrated in primary 

cells to be linked to oxidative stress (Byon et al. 2008; Jana and Pahan 2007). Furthermore, it has 

been identified in cellular response to hyperosmolar stress (Robciuc et al. 2012). 

Hyperosmolarity is well known to impose remarkable stress on membranes, especially the ones 

that are in direct contact with the environment (Hallows et al. 1996), but it has never been 

associated with air pollution.  

Furthermore we identified three CpG sites significantly and homogeneously associated with the 

28-day average exposure to fine particle: cg26003785, cg11046593 and cg23276912 annotated 

to NXN, MSGN1 and C1orf212 respectively, which are protein-coding genes.  

Specifically, NXN has been observed as partner of phosphofructokinase (PFK) 1, a glycolytic 

enzyme, reported as contributor for systemic metabolic conditions and also cancerous processes 

(Mor et al. 2011; Yi et al. 2012).   

Increased methylation was detected at cg11046593, located in the promoter of MSGN1, that -

when methylated - has been shown to lead to transcriptional repression (Jones and Takai 2001). 

Domain databases also determined shared protein domain with AHR (Aryl Hydrocarbon 

Receptor) and ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator), involved in regulation 

of inflammatory processes implicated in multi-factorial diseases like pulmonary disorders 
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(Scrivo et al. 2011; Ukena et al. 2010). It was found that these two genes regulate chemokine-

responses mostly relating AHR and ARNT to the nuclear factor-kB family (NF-kB) where the 

p65/p50 dimer is pivotal in the regulation of the inflammatory responses (Ovrevik et al. 2014; 

Vogel and Matsumura 2009). AHR and particulate matter exposure have already been associated 

through nongenotoxic events and Th17 polarization (Andrysik et al. 2011; van Voorhis et al. 

2013), but here we observed a epigenetic factor as possible mediator. Even without a direct 

association, the discovery of MSGN1 provides a novel hypothesis in the path between exposure 

to endogenous factors and immunological system responses and future studies are needed to 

verify and eventually clarify the possible role of ARNT.  

Temporal Variation within Short- and Mid- Term Range 

For cumulative exposures over 28 days, ten CpG sites were genome-wide significant. Larger 

datasets are needed to better understand the optimal exposure time window and to confirm a 

hypothesis, that it may be CpG site-specific. The cases of cg25575464 (Bonferroni significant at 

2-day, FDR significant at 7-day and non-significant at 28-day average) and cg19963313 (non-

significant at 2-day, Bonferroni significant at 7-day and FDR significant at 28-day average), 

might be consistent with the hypothesis regarding CpGs associated at shorter time periods but 

not over longer time.  

One of the genes we highlighted, ZIMZ1, has already been connected to skin tumors in mouse 

models (Rogers et al. 2013) and our results, independently, link it to PM exposure via DNA 

methylation, reinforcing the hypothesized role of epigenetics in the pathways to tumor 

development (Laird 2005).  
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We observed mostly positive effect estimates, in this genome-wide methylation study, in 

contrasts with previous results (Guo et al. 2014) that observed a negative association between 

short-term PM exposure and DNA methylation in tandem repeats. Zeilinger et al. (Zeilinger et al. 

2013) observed decreased methylation as consequence of active smoking in a cross-sectional 

study. Their most striking and significant CpG belongs to AHRR that repress AHR and we 

observed increased methylation in a gene that shares protein domain with AHR. Possible 

relations and implications need to be verified in the future.  

Strengths and Limitations 

The data presented here combines evidence from three independent studies, each at least 

considering data of 500 participants, a paramount element to identify differentially-methylated 

CpG sites that have a very little variability. We also adjusted our models for important variables 

that may otherwise confound the effect of associations with ubiquitous exposures such as 

ambient air pollution. Finally, we used daily averages of temperature to calculate the same 

trailing averages and apply appropriate adjustment for weather conditions. We performed a 

number of sensitivity analysis. Overall, the results of a priori chosen model were considered a 

conservative estimate. The observed hits between PM2.5 and CpG sites were independent of long-

term exposure at the residence and were not influenced by potential outliers. This study has also 

limitations. There is a consensus in the scientific community that a background station measuring 

particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) mass concentrations could be 

regarded as representative for larger urban areas (Monn 2001). Considering that no coal power 

plant is in operation in proximity of the participants and only a small percentage of them live 

close to a major road we had to rely on ambient air pollution measurements since personal 
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exposures were not available. Measurement error from using a single site in this study is 

expected to result in primarily Berkson-type measurement error (Zeger et al. 2000), which would 

bias the standard errors, but not the estimated associations. We also acknowledge that the study 

included only whites, and generalizability to other populations is uncertain. While KORA was 

cross-sectional, the NAS study assessed the role of ambient particles longitudinally on time. 

Nevertheless, we had not comparable exposure estimates available to assess the long-term effect 

of ambient particles. Finally, the Illumina 450k does not completely cover the entire epigenome. 

CONCLUSIONS 

In conclusion, in this epigenome-wide investigation of CpG dinucleotide methylation, we 

highlighted several CpG sites associated with cumulative exposure to ambient particles up to a 

month. The trend of significance level of our results tends to increase with the length of the 

averaging period and the majority shows an increase in methylation. The identified genetic loci 

suggest novel biological pathways that may link ambient particulate matter to health outcomes 

such as tumor development and also gene regulation, inflammatory stimuli, pulmonary disorders 

and glucose metabolism. Future mechanistic studies are needed to establish whether these 

epigenetic changes could potentially explain the evidence found for ambient fine particles and 

lung cancer incidence.  
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Table 1. Descriptive statistics of the study participants in the KORA F3, KORA F4 and US 

Veteran Affairs Normative Aging Study (VA) 

Variables 
Mean ± SD / N (%) 

KORA F3  
(n=500, 2004-05) 

 KORA F4  
(n=1,799, 2006-08) 

NAS baselinea 
(n=657) 

Participants Characteristics 

Males 260 (52.0) 887 (49.3) 657 (100) 

Age, years 53.12 ± 9.6 60.92 ± 8.9 72.44 ± 6.9 

BMIb, kg/cm2 27.15 ± 4.5 28.15 ± 4.8 28.07 ± 4.1 

Monthly Income, euro 1104.8 ± 583.9 1159.84 ± 556.6 * 

Education, years 11.7 ± 2.8 11.5 ± 2.5 15.07 ± 2.9 

Drinkersc 296 (59.2) 1038 (57.7) 130 (19.7) 

Alcohol Consumption, g/day 16.11 ± 19.6 15.49 ± 20.4 * 

Smoking 

Never Smokers 226 (45.2) 226 (12.6) 188 (28.6) 

Former Smokers 11 (2.2) 782 (43.5) 446 (67.9) 

Current Smokers 232 (46.0) 753 (41.9) 23 (3.5) 
Passive Smokers (either 
Former or Never) 11 (2.2) 36 (2.0) * 

Missing 20 (4.4) 2 (0.0) 0 (0.0) 

Environmental Exposure (mean of the daily average of the day before the visit) 

PM2.5
d, µg/m3 

Percentiles (25th, 50th, 75th) 
20.0 ± 11.6 

14.0, 17.7, 25.9 
14.2 ± 10.2  

6.7, 12.2, 18.8 
10.6 ± 7.1 

6.3, 9.0, 13.2 

Temperature, °C 
Percentiles (25th, 50th, 75th) 

7.1 ± 7.5 
0.9, 7.9, 13.2 

8.7 ± 6.6 
3.9, 7.5, 13.1 

12.5 ± 8.5 
6.4, 12.7, 19.8 

a First time blood sample was collected (time window: 1999-2007) 
b Body Mass Index 
c Participants with at least 2 drinks per week 
d Particulate Matter smaller than 2.5 µm 

* Data not available 
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Table 2. Characteristics of the CpG sites from meta-analyses of 2- and 7-day trailing averages, significant with Bonferroni or FDR 

methods  

Name CHRa Reference 
Gene Name 

Methylation level Illumina 
Beta, Mean ± SD Fixed-effect 

Regression 
Coefficientb 

Sig.c FDRd I2 
(%) Sig. I2 

F3 F4 NAS  Mean 

Trailing 2-day average PM2.5
e 

cg25575464 17 NEURL4 .03 ± .01 .02 ± .01 .01 ± .01 .02 ± .01 0.00082 4.69E-08 0.005 91.0 <0.001 

Trailing 7-day average PM2.5
f 

cg04078416  3 CCDC12 .05 ± .01 .05 ± .01 .02 ± .01 .04 ± .01 0.0001 4.19E-07 0.027 0.0 0.52 

cg15996282 5 LMBRD2; 
SKP2 .04 ± .01 .04 ± .03 .02 ± .01 .04 ± .02 0.0020 7.25E-07 0.010 0.0 0.55 

cg00402617 8 YWHAZ .07 ± .01 .06 ± .02 .03 ± .01 .06 ± .02 0.0002 1.29E-07 0.018 62.3 0.07 

cg19963313g 8 NSMAF .04 ± .01 .03 ± .01 .02 ± .01 .03 ± .01 0.0018 2.49E-08 0.016 0.0 0.59 

cg15883382 10 NAh .04 ± .01 .05 ± .01 .02 ± .01 .04 ± .01 0.0001 8.43E-07 0.040 62.2 0.07 

cg09225537 15 MAG .03 ± .01 .02 ± .01 .01 ± .01 .02 ± .01 0.0001 4.44E-07 0.027 0.0 0.75 

cg08757611 17 NAh .03 ± .01 .03 ± .01 .02 ± .01 .03 ± .01 9.70E-05 2.15E-07 0.018 0.0 0.68 

cg25575464 17 NEURL4 .03 ± .01 .02 ± .01 .01 ± .01 .02 ± .01 0.0001 1.76E-07 0.018 87.6 <0.001 

cg02608596g 19 MPND .04 ± .01 .03 ± .02 .02 ± .01 .03 ± .02 0.0017 7.69E-08 0.010 4.8 0.35 
a CHR: chromosome 
b Estimated difference in methylation for a 10 µg/m3 increase in PM2.5 adjusted for sex, age, income (education years for NAS, in 

which information on income was not available), smoking status, alcohol intake, BMI, temperature (moving average always matching 
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with the PM exposure window), day of the week, season and the proportion of five estimated white blood cell types: Monocytes, B 

Cells, CD8 T Cells, CD4 T Cells, NK 
c P-values, Bonferroni significance level at 7.5E-08 
d FDR: False Discovery Rate with Benjamini-Hochberg method, significance level at 0.05 
e 2-day Trailing average starting from the day of the visit 
f 7-day Trailing average starting from the day of the visit 
g Shown in Figure 2 

h NA: no annotated gene 
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Table 3. Characteristics of the CpG sites from meta-analysis of 28-day trailing average, significant with Bonferroni method, or FDR 

significant and located in a gene with another CpG that meets genome-wide significance, or FDR significant and Bonferroni 

significant at shorter time-window 

Name CHRa Reference 
Gene Name 

Methylation level Illumina 
Beta, Mean ± SD Fixed-effect 

Regression 
Coefficientb 

Sig.c FDRd I2 
(%) Sig. I2 

F3 F4 NAS  Mean 

cg16308101 1 SERBP1 .45 ± .03 .46 ± .03 .44 ± .03 .45 ± .03 -0.0076 2.86E-08 0.002 91.3 <0.001 

cg16856342e 1 SERBP1 .46 ± .02 46 ± .02 .38 ± .02 .44 ± .02 -0.0061 1.74E-07 0.003 1.4 0.36 

cg23276912f 1 C1orf212 .87 ± .03 .89 ± .03 .86 ± .04 .90 ± .03 0.0073 4.56E-08 0.002 25.9 0.26 

cg03455255 2 TSPYL6; 
ACYP2 .90 ± .02 .92 ± .01 .93 ± .02 .92 ± .02 0.0047 1.86E-08 0.001 61.8 0.073 

cg11046593f 2 MSGN1 .80 ± .05 .83 ± .09 .86 ± .07 .83 ± .08 0.016 1.12E-08 0.001 46.1 0.16 

cg04423572 3 ACVR2B-
AS1 .70 ± .04 .74 ± .04 .74 ± .03 .73 ± .04 0.013 7.26E-09 0.001 97.3 <0.001 

cg19963313g 8 NSMAF .04 ± .01 .03 ± .01 .02 ± .01 .03 ± .01 0.0024 4.12E-07 0.005 0.0 0.90 

cg13169286 10 NAh .55 ± .03 .59 ± .07 .51 ± .06 .57 ± .06 -0.013 6.21E-08 0.003 85.4 <0.001 

cg02795981e 10 ZMIZ1 .78 ± .05 .78 ± .06 .79 ± .08 .78 ± .06 0.0093 3.94E-05 0.029 49.5 0.14 

cg19215199 10 ZMIZ1 .82 ± .04 .83 ± .04 .82 ± .06 .83 ± .04 0.0093 3.66E-08 0.002 94.3 <0.001 

cg13527922 11 F2 .86 ± .02 .87 ± .02 .87 ± .02 .87 ± .02 0.0051 1.54E-08 0.001 81.9 0.004 

cg24101979e 17 NXN .81 ± .03 .77 ± .04 .80 ± .05 .78 ± .04 0.0072 8.95E-05 0.001 92.4 <0.001 

cg26003785f 17 NXN .94 ± .01 .96 ± .01 .97 ± .02 .96 ± .01 0.0038 9.53E-09 0.001 27.3 0.25 
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cg26283240e 17 NXN .87 ± .03 .86 ± .03 .88 ± .04 .87 ± .03 0.0065 2.03E-05 0.024 85.6 <0.001 

cg06004017e 22 MN1 .86 ± .02 .90 ± .02 .87 ± .03 .89 ± .02 0.0046 0.00019 0.048 74.6 0.02 

cg20680669 22 MN1 .96 ± .02 .96 ± .02 .99 ± .01 .97 ± .02 -0.0049 2.09E-08 0.001 67.4 0.046 
28-day Trailing average starts from the day of the visit. A complete list of all CpGs that meet genome-wide significance or FDR 

significance for 28-day PM2.5 is provided in Supplemental Material, Excel File S1.  
a CHR: chromosome 
b Estimated difference in methylation for a 10 µg/m3 increase in PM2.5 adjusted for sex, age, income (education years for NAS, in 

which information on income was not available), smoking status, alcohol intake, BMI, temperature (moving average always matching 

with the PM exposure window), day of the week, season and the proportion of five estimated white blood cell types: Monocytes, B 

Cells, CD8 T Cells, CD4 T Cells, NK 
c P-values, Bonferroni significance level at 7.5E-08 

d FDR: False Discovery Rate with Benjamini-Hochberg method, significance level at 0.05 
e Non-Bonferroni significant but FDR significant CpGs located in the a gene with a Bonferroni significant CpG 
f Shown in Figure 3 
g FDR significant and Bonferroni significant at 7-day PM2.5 
h NA: no annotated gene 
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FIGURES LEGENDS 

Figure 1. Manhattan plots showing fixed-effect p-values from the meta-analysis of KORA F3, 

KORA F4 and NAS longitudinal cohort studies across the human genome after fully adjusted 

model. Each dot corresponds to a CpG methylation site. Panel A: 2-day PM2.5 exposure; Panel B: 

7-day PM2.5 exposure; Panel C: 28-day PM2.5 exposure (µg/m3).  

Figure 2. Forest plots (left side) and Regional plots regarding cg19963313 that achieved 

genome-wide significance level and cg02608596 that was close to genome-wide significance at 

7-day average and showed homogeneity. Forest plots show KORA F3, KORA F4 and NAS 

longitudinal cohort estimates and pooled meta-analysis results. Regional plots show the p-values 

from Figure 1, Panel B of each annotated CpG sites (diamonds) in a 200k bp length genome 

segment around the top CpG. The color and the size of the diamonds represent the intensity of 

the correlation with the top CpG target (in the center). The blue broken line connects the average 

methylation value of adjacent CpG sites; the right axis displays the 0-1 methylation scale. 

Correlations and averages values are calculated as mean of the three studies. Green arrows 

represent gene extension. 

Figure 3. Forest plots (left side) and Regional plots regarding the CpGs that achieved Bonferroni 

genome-wide significance level and homogeneity at 28-day exposure. Forest plots show KORA 

F3, KORA F4 and NAS longitudinal cohort estimates and pooled meta-analysis results. Regional 

plots show the p-values from Figure 1, Panel C of each annotated CpG sites (diamonds) in a 

200k bp length genome segment around the top CpG. The color and the size of the diamonds 

represent the intensity of the correlation with the top CpG target (in the center). The blue broken 

line connects the average methylation value of adjacent CpG sites; the right axis displays the 0-1 

methylation scale. Correlations and averages values are calculated as mean of the three studies. 

Green arrows represent gene extension. Orange outlined diamonds highlight FDR significant 

CpG sites.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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